On the Possibility of a Back Door in the NIST SP800-90 Dual Ec Prng

Dan Shumow Niels Ferguson Microsoft

The Dual Ec PRNG

- ϕ : prime curve \rightarrow integers $\phi(x,y) = x$
- P, Q points on the curve (per SP800-90)

Equations:

$$r_i = \varphi(s_i^* P)$$
 $t_i = \varphi(r_i^* Q)$ $s_{i+1} = \varphi(r_i^* P)$

The Objection

- Point *P* is generator of the curve (per SP800-90).
- Point Q is a specified constant. It is not stated how it was derived.
- NIST prime curves have prime order. So there exists *e* such that Q^e = P.

The Attack

- Output: S, the set of possible values of s_{i+1} the internal state of the Dual Ec PRNG at the subsequent step.
- Suppose an attacker knows value e.
 Given: a block of output o_i from a Dual EC PRNG Instance

```
Set S = \{\}.

For 0 \le u \le 2^{16} - 1

x = u | o_i

z \equiv x^3 + ax + b \mod p.

If y \equiv z^{1/2} \mod p exists => A = (x, y) is on the curve

S = S \cup \{\varphi(e^*A)\}.
```

How this works:

One of the values x = t_i
 If A is the point with x coordinate t_i then:

$$A = r_i^* Q$$

Thus:

$$\varphi(e^*A) = \varphi(e^* r_i^* Q) = \varphi(r_i^* P) = s_{i+1}.$$

$$=> s_{i+1}$$
 is in *S*.

• |S| ≈ 2¹⁵

Experimental Verification

- 1. Pick NIST P-256 Curve
- 2. Chose random d
- 3. Chose $Q_2 = d^*P$
- 4. Replace Q with Q_2
- 5. Given |Output| = 32 > out block length
- 6. Filter out s_{i+1} values that do not generate next 2 bytes.

In every experiment 32 bytes of output was sufficient to uniquely identify the internal state of the PRNG.

The Main Point

- If an attacker knows d such that d*P = Q then they can easily compute e such that e*Q = P (invert mod group order)
- If an attacker knows *e* then they can determine a small number of possibilities for the internal state of the Dual Ec PRNG and predict future outputs.
- We do not know how the point Q was chosen, so we don't know if the algorithm designer knows d or e.

Conclusion

- WHAT WE ARE NOT SAYING: NIST intentionally put a back door in this PRNG
- WHAT WE ARE SAYING: The prediction resistance of this PRNG (as presented in NIST SP800-90) is dependent on solving one instance of the elliptic curve discrete log problem.
 - (And we do not know if the algorithm designer knew this before hand.)

Suggestions for Improvement

- Truncate off more than the top 16 bits of the output block.
 - Results on extractors from *x* coordinates of EC points of prime curves suggest truncating off the top bitlen/2 bits is reasonable.
- Generate a random point Q for each instance of the PRNG.