On the Possibility of a Back Door in the NIST SP800-90 Dual Ec Prng

Dan Shumow
Niels Ferguson Microsoft

The Dual Ec PRNG

- φ : prime curve \rightarrow integers

$$
\varphi(x, y)=x
$$

- P, Q points on the curve (per SP800-90)

Equations:

$$
r_{i}=\varphi\left(s_{i}^{*} P\right) \quad t_{i}=\varphi\left(r_{i}^{*} Q\right) \quad s_{i+1}=\varphi\left(r_{i}^{*} P\right)
$$

The Objection

- Point P is generator of the curve (per SP800-90).
- Point Q is a specified constant. It is not stated how it was derived.
- NIST prime curves have prime order. So there exists e such that $Q^{e}=P$.

The Attack

- Output: S, the set of possible values of s_{i+1} the internal state of the Dual Ec PRNG at the subsequent step.
- Suppose an attacker knows value e.

Given: a block of output o_{i} from a Dual EC PRNG Instance
Set $S=\{ \}$.
For $0 \leq u \leq 2^{16}-1$
$x=u \mid o_{i}$
$z \equiv x^{3}+a x+b \bmod p$.
If $\mathrm{y} \equiv z^{1 / 2} \bmod p$ exists $=>A=(x, y)$ is on the curve

$$
S=S \cup\left\{\varphi\left(e^{*} A\right)\right\} .
$$

How this works:

- One of the values $x=t_{i}$

If A is the point with x coordinate t_{i} then:

$$
A=r_{i}^{*} Q
$$

Thus:
$\varphi\left(e^{*} A\right)=\varphi\left(e^{*} r_{i}{ }^{*} Q\right)=\varphi\left(r_{i}{ }^{*} P\right)=s_{i+1}$.
$=>s_{i+1}$ is in S.

- $|S| \approx 2^{15}$

Experimental Verification

1. Pick NIST P-256 Curve
2. Chose random d
3. Chose $Q_{2}=d^{*} P$
4. Replace Q with Q_{2}
5. Given |Output| $=32>$ out block length
6. Filter out s_{i+1} values that do not generate next 2 bytes.

In every experiment 32 bytes of output was sufficient to uniquely identify the internal state of the PRNG.

The Main Point

- If an attacker knows d such that $d^{*} P=Q$ then they can easily compute e such that $e^{*} Q=P$ (invert mod group order)
- If an attacker knows e then they can determine a small number of possibilities for the internal state of the Dual Ec PRNG and predict future outputs.
- We do not know how the point Q was chosen, so we don't know if the algorithm designer knows d or e.

Conclusion

- WHAT WE ARE NOT SAYING: NIST intentionally put a back door in this PRNG
- WHAT WE ARE SAYING:

The prediction resistance of this PRNG (as presented in NIST SP800-90) is dependent on solving one instance of the elliptic curve discrete log problem.
(And we do not know if the algorithm designer knew this before hand.)

Suggestions for Improvement

- Truncate off more than the top 16 bits of the output block.
- Results on extractors from x coordinates of EC points of prime curves suggest truncating off the top bitlen/2 bits is reasonable.
- Generate a random point Q for each instance of the PRNG.

