| |

Juan Garay (Bell Labs)
Aggelos Kiayias (University of Connecticut)
Hong-Sheng Zhou (University of Connecticut)

Universal Composability (UC)
Framework

« Guarantees Strong Security
Properties (Concurrent Composition,
Non-malleability, etc.)

 Simulation-based

UC Framework

Adversary 4 Simulator §

Real World

|deal World

Distinguisher Z
(the “environment”)

UC Framework

Adversary 4 Simulator §

Real World

|deal World

Distinguisher Z Ideal functionality 7
(the “environment”)

ldeal Functionalities

i-de-al (i-de'al, 1-dal')
n.

A conception of something in its absolute perfection.

One that is regarded as a standard or model of perfection or excellence.
An ultimate object of endeavor; a goal.

An honorable or worthy principle or aim.

A

ldeal Functionalities

i-de-al (-de'sl, i-d&l"))

n.

B ad B -

A conception of something in its absolute perfection.

One that is regarded as a standard or model of perfection or excellence.
An ultimate obiect of endeavor: a goa

An honora s

lAAAal Ciinatianalitian

The ideal process

Participants: Environment 2 and ideal-process adversary S, interacting with ideal functionality &

and durnmy parties Py, .., . All participants have the security parameter k; Z also has input z.

-
=z

1. While Z has not halted do:

(a)

(b)

(d)

(e)

Zis activated (i.e., its activation tape is set to 1), Z's activity remains unchanged from
the real-life model (Figure 1). In particular, Z cannot access T,

Once a durmmy party 7% is activated with a new value on its input tape, it copies this
value to the incoming communication tape of F, and enters the waiting state. J is
activated next,

Once F is activated it follows its program until it enters either the waiting state or the
halt state. In particular, 7 may write on its outgoing communication Lape messages
addressed to the parties and adversary. If 7 wrote a message to the adversary then the
adversary is activated next. Otherwise, the party that was last activated before JF is
activated again,

Once the adversary & is activated, it follows its program and possibly writes new infor-
mation on its output tape. In addition, & can perform one of the following activities.

i. & may ask to see the contents of the outgoing communication tapes of the durmmy
parties, and the destinations of the outgoing messages generated by . The desired
information is then written on 8’s incoming communication tape,

i, & may deliver a message m from J to some dumimy party P;. Here § does not have
access to the contents of m (unless _,- is corrupted): it only sees the destination of
111,

i, S may write a message, m, on the incoming communication tape of . This message
appears with sender &.

iv. & may corrupt a dummy party . Upon corruption, 2 and F are notified of the
corruption event, and J may hand & some information regarding the internal state
of P:. From this point on, % may no longer be activated: also, & receives all the
messages from F that are addressed to 7%, and may deliver to F messages whose
sender is 7.

If some message was delivered to P (resp.. J) in this activation then P (resp., F) is

activated once & enters the waiting state. Otherwise, 2 is activated next,

Once a dummy party P is activated with a new incoming message from JF it capies this

message Lo its output tape and enters the waiting state. Z is activated next,

2. The glabal output is the first bit of the output tape of 2.

Traditional Security Notions

CPA/CCA

CMA Security

SK Security
ZK/WI/Soundness
Hiding/Binding/NM

 Well-understood.

 On the other hand:
Definition of UC
functionalities error-
prone / leads to
unstable definitions.

— Needed : Systematic
way to translate
traditional security
notions

This Work

This Work

» Language-theoretic description of functionalities

This Work

» Language-theoretic description of functionalities

 Bridge traditional defs to UC defs systematically

This Work

» Language-theoretic description of functionalities
 Bridge traditional defs to UC defs systematically

* Allows for
— modular and non-modular design at the same time.
— ldentifying relations between functionalities easily.
— “debug” existing functionalities.

Example: Secure Sig to Fy .

SS = correctness + consistency + unforgeability

Example: Secure Sig to Fy .

SS = correctness + consistency + unforgeability

i i i

Fcorrect Fconsistent Funforge

Example: Secure Sig to Fy .

SS = correctness + consistency + unforgeability

i i i

}:SS — Fcorrect N Fconsistent N Funforge

Example: Secure Sig to Fy .

SS = correctness + consistency + unforgeability

i i i

}:SS — Fcorrect N Fconsistent N Funforge

Fsicr [c01], Fggp [c04] €FSS

From Unforgeability to funforge

From Unforgeability to funforge

From Unforgeability to funforge

From Unforgeability to funforge

From Unforgeability to funforge

From Unforgeability to funiorge

From Unforgeability to funiorge

From Unforgeability to funforge

From Unforgeability to funforge

From Unforgeability to funforge

From Unforgeability to funiorge

o

leaking/influencing channels

From Unforgeability to Funforge

qunforge

Funforge js defined based on
the 1/0 around F in complementary fashion to Z

General Approach

Start with traditional def.

Define environment around it.

Form ideal F 1/O language specifying
influence/leaking channels.

Obtain CLASS of functionalities that
defeats the environment.

[| [|

Juan Garay (Bell Labs)
Aggelos Kiayias (University of Connecticut)
Hong-Sheng Zhou (University of Connecticut)

