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Universal Composability (UC)
Framework

« Guarantees Strong Security
Properties (Concurrent Composition,
Non-malleability, etc.)

 Simulation-based
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ldeal Functionalities

i-de-al (i-de'al, 1-dal')
n.

A conception of something in its absolute perfection.

One that is regarded as a standard or model of perfection or excellence.
An ultimate object of endeavor; a goal.

An honorable or worthy principle or aim.
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The ideal process

Participants: Environment 2 and ideal-process adversary S, interacting with ideal functionality &

and durnmy parties Py, .., . All participants have the security parameter k; Z also has input z.

-
=z

1. While Z has not halted do:

(a)

(b)

(d)

(e)

Zis activated (i.e., its activation tape is set to 1), Z's activity remains unchanged from
the real-life model (Figure 1). In particular, Z cannot access T,

Once a durmmy party 7% is activated with a new value on its input tape, it copies this
value to the incoming communication tape of F, and enters the waiting state. J is
activated next,

Once F is activated it follows its program until it enters either the waiting state or the
halt state. In particular, 7 may write on its outgoing communication Lape messages
addressed to the parties and adversary. If 7 wrote a message to the adversary then the
adversary is activated next. Otherwise, the party that was last activated before JF is
activated again,

Once the adversary & is activated, it follows its program and possibly writes new infor-
mation on its output tape. In addition, & can perform one of the following activities.

i. & may ask to see the contents of the outgoing communication tapes of the durmmy
parties, and the destinations of the outgoing messages generated by . The desired
information is then written on 8’s incoming communication tape,

i, & may deliver a message m from J to some dumimy party P;. Here § does not have
access to the contents of m (unless _,- is corrupted): it only sees the destination of
111,

i, S may write a message, m, on the incoming communication tape of . This message
appears with sender &.

iv. & may corrupt a dummy party . Upon corruption, 2 and F are notified of the
corruption event, and J may hand & some information regarding the internal state
of P:. From this point on, % may no longer be activated: also, & receives all the
messages from F that are addressed to 7%, and may deliver to F messages whose
sender is 7.

If some message was delivered to P (resp.. J) in this activation then P (resp., F) is

activated once & enters the waiting state. Otherwise, 2 is activated next,

Once a dummy party P is activated with a new incoming message from JF it capies this

message Lo its output tape and enters the waiting state. Z is activated next,

2. The glabal output is the first bit of the output tape of 2.




Traditional Security Notions

CPA/CCA

CMA Security

SK Security
ZK/WI/Soundness
Hiding/Binding/NM

 Well-understood.

 On the other hand:
Definition of UC
functionalities error-
prone / leads to
unstable definitions.

— Needed : Systematic
way to translate
traditional security
notions
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This Work

» Language-theoretic description of functionalities
 Bridge traditional defs to UC defs systematically

* Allows for
— modular and non-modular design at the same time.
— ldentifying relations between functionalities easily.
— “debug” existing functionalities.
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Example: Secure Sig to Fy .

SS = correctness + consistency + unforgeability
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}:SS — Fcorrect N Fconsistent N Funforge

Fsicr [c01], Fggp [c04] €FSS
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From Unforgeability to funiorge

o

leaking/influencing channels



From Unforgeability to Funforge

qunforge

Funforge js defined based on
the 1/0 around F in complementary fashion to Z



General Approach

Start with traditional def.

Define environment around it.

Form ideal F 1/O language specifying
influence/leaking channels.

Obtain CLASS of functionalities that
defeats the environment.
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