Average versus Worst in Solving Sparse Algebraic Equations

Igor Semaev

Department of Informatics, University of Bergen, Norway

Rump session, Crypto2007

Notation

- F_q finite field with q elements;
- $X = \{x_1, x_2, \dots, x_n\}$ variables from F_q ;
- X_i subsets of X of size l;
- f_i polynomials over F_q in variables X_i .

Problem

• Look for all solutions in F_q to the nonlinear equations

$$f_1(X_1) = 0, \ldots, f_m(X_m) = 0,$$

- Equations are called *l*-sparse.
- Motivation: cryptanalysis. E.g. DES m = 512 Boolean equations, n = 504 variables, at most l = 14 variables in each equation

Worst case

q = 2

- *l*-**sparse equations** is polynomially equivalent to *l*-**SAT** with the same set of variables.
- The worst case is the same and complexity bounds are the same.
- The average cases are different.

Our Results

- 1. Deterministic Agreeing-Gluing1 algorithm to solve l-sparse equations.
- 2. Simple and practical.
- 3. Almost no additional memory is required. Keep only initial equations.
- 4. We estimate the expected complexity.

Probabilistic Model

- The equations $f_i(X_i)$ are chosen:
 - 1. randomly,
 - 2. independently of each other,
 - 3. X_i and f_i have uniform distribution.
- The Algorithm complexity is a random variable.
- Its expectation is rigorously estimated.
- The estimates are being compared with the worst case.

Average versus worst

• Let q = 2 and m = n.

l =	3	4	5	6
the worst case	1.324^{n}	1.474^{n}	1.569^{n}	1.637^{n}
Agreeing-Gluing1, expectation	1.113^{n}	1.205^{n}	1.276^{n}	1.334^{n}

- Significant difference in the worst and average cases.
- E.g. for l = 3 the bounds are

n =	100	300	500	1000
the worst case	1.510^{12}	3.610^{36}	8.710^{60}	7.710^{121}
Agreeing-Gluing1, expectation	4.410^4	8.810^{13}	1.710^{23}	3.110^{46}

Conclusion

Average systems of sparse algebraic equations

are not so difficult as one may expect.